Космический ландшафт - Страница 101


К оглавлению

101

Предсказание Дираком существования антиматерии было одним из величайших моментов в истории физики. Оно не только привело к последующему экспериментальному открытию позитрона, но ознаменовало рождение нового направления в физике – квантовой теории поля, которая затем привела к появлению фейнмановских диаграмм и в конце концов – к созданию Стандартной модели. Но давайте не будем бежать впереди паровоза истории.

Дирак не задумывался об экспериментальных подтверждениях, когда выводил своё знаменитое уравнение, описывающее квантово-механическое поведение релятивистских электронов. Его заботило лишь, как согласовать нерелятивистское уравнение Шрёдингера со специальной теорией относительности Эйнштейна. Получив уравнение Дирака, он получил ключ, открывающий дверь в квантовую электродинамику. Изучая квантовую электродинамику, теоретики, разумеется, нашли в ней несогласованности, которые «заклеили» различными перенормировками. Эти несогласованности не стали препятствием на пути к созданию современной теории поля. Физики продолжали удивляться бесконечной вакуумной энергии и задаваться вопросом, почему она не создаёт гравитационного поля. Можно спросить: «Способны ли физики развивать свои теории, не получая экспериментальных подтверждений их правильности?» Или задаться вопросом: «Готовы ли молодые учёные заниматься чисто теоретической работой, не имеющей выхода на эксперимент?» Но я не думаю, что вопрос о возможности дальнейшего развития теоретической физики стоял бы на повестке дня. Кроме того, 35-летняя история теории струн подтверждает, что теоретики способны сколь угодно долго развивать свои теории, пока находится кто-то, кто согласен им за это платить.

А как насчёт ядер – микроскопических положительно заряженных «солнц» в центре миниатюрных атомных планетных систем? Могли бы мы теоретически вывести существование протона и нейтрона? Обнаружить протон не составило бы большого труда. Первый шаг в этом направлении сделал Дальтон ещё в 1808 году, обнаружив, что массы всех атомов относятся друг к другу как целые числа, откуда закономерно вытекает, что атомные ядра построены из набора одинаковых кирпичиков. Кроме того, поскольку заряд ядра почти всегда меньше атомной массы, логично предположить, что кирпичики, из которых сложено ядро, не все имеют один и тот же заряд. Простейшим выводом будет предположение, что частицы, составляющие ядро, могут быть двух типов: положительно заряженные и нейтральные, причём массы положительно заряженных и нейтральных частиц одинаковы. Умные теоретики пришли бы к такому выводу в кратчайшие сроки.

Или не пришли бы? Есть одна вещь, которая может ввести их в заблуждение, и я не знаю, как надолго. Существует возможность более простого объяснения структуры ядра, чем предположение о существовании протонов и нейтронов – это объяснение вообще не требует введения новой частицы. Ядро может представляться набором протонов с застрявшими в нём электронами, число которых меньше, чем число протонов. Например, 6 электронов, застрявших в куче из 12 протонов, могут интерпретироваться как ядро атома углерода, состоящее, как сейчас известно, из 6 протонов и 6 нейтронов. Масса нейтрона близка к суммарной массе протона и электрона. Разумеется, пришлось бы ввести новый тип сил: обычные электростатические силы, действующие между электроном и протоном, недостаточно сильны, чтобы удержать в ядре лишние протоны, заряд которых не скомпенсирован зарядом застрявших электронов. Для новой силы пришлось бы придумывать новую частицу-переносчик этого взаимодействия. Возможно, в конце концов они бы вернулись к нейтрону, решив, что это не такая уж и плохая идея.

Тем временем Эйнштейн разработал свою теорию гравитации, и любопытные физики принялись исследовать его уравнения. Здесь опять же нам нет необходимости гадать, как всё могло бы быть, потому что история уже всё предугадала за нас. Карл Шварцшильд нашёл решения уравнений Эйнштейна ещё до того, как тот завершил разработку своей теории. Решение Шварцшильда известно сегодня под названием чёрной дыры. Эйнштейн сам вывел существование гравитационных волн, которые в конечном итоге привели к идее гравитона. Большинство этих решений не требует для своего получения ни экспериментов, ни наблюдений. Следствия общей теории относительности были выведены безотносительно к тому, правильна эта теория или нет, имеет она экспериментальные подтверждения или не имеет. Даже современная теория чёрных дыр, с которой мы столкнёмся в десятой главе этой книги, использует только решение Шварцшильда в сочетании с простейшими идеями квантовой теории поля.

Могли ли теоретики додуматься до полной структуры Стандартной модели? С протонами и нейтронами более-менее понятно, а как же кварки, нейтрино, мюоны и всё прочее? Я не вижу никаких путей, ведущих к ним. Но касательно фундаментальных теоретических основ: теории Янга – Миллса – здесь, как мне кажется, нет никаких сомнений. Все необходимые эксперименты к этому времени уже были поставлены, и все данные получены. В 1953 году, не имея никакой другой мотивации, кроме обобщения теории Калуцы на ещё одно дополнительное измерение, один из величайших физиков в истории создал математическую теорию, которая сегодня называется неабелевой калибровочной теорией. Вспомним, что Калуца добавил новое измерение к трём пространственным и тем самым получил единое описание гравитации и электродинамики. Паули, чтобы добавить ещё одно измерение и получить в общей сложности 5 + 1-мерное пространство, свернул два дополнительных измерения в крошечную 2-сферу. И что же у него вышло? Он обнаружил, что два дополнительных измерения порождают теорию нового вида, подобную электродинамике, но с новыми особенностями. Вместо одного фотона список частиц теперь содержал три фотоноподобные частицы. И что любопытно, каждый фотон нёс заряд: он мог испускать любой из двух других фотонов. Это был первый вариант неабелевой калибровочной теории, прообраз теории Янга – Миллса. Сегодня мы считаем неабелевы калибровочные теории основой для всей Стандартной модели. Глюоны, фотоны, Z-бозоны и W-бозоны являются простыми обобщениями трёх фотоноподобных частиц Паули.

101