Космический ландшафт - Страница 11


К оглавлению

11

Представьте идеальный бильярдный стол, катаясь по которому, шары не испытывают трения, а все столкновения шаров абсолютно упругие, то есть при столкновениях шаров не происходит потери кинетической энергии. В дополнение ко всему уберём лузы, так что шары, однажды приведённые в движение, будут бесконечно долго продолжать двигаться, сталкиваясь друг с другом и со стенками бильярда. В начале игры пятнадцать шаров располагаются в виде треугольника, наподобие двумерного аналога пирамиды пушечных ядер. Шестнадцатый шар разбивает пирамиду.

То, что произойдёт далее, чрезвычайно сложно поддаётся предсказанию и точному описанию. Но почему? Потому что каждое столкновение умножает незначительные различия между начальными скоростями и положениями шаров, и даже очень малое изменение начальных параметров приводит к огромному изменению конечных скоростей и координат после множества столкновений. Ситуация подобной ультрачувствительности поведения системы к начальным условиям называется хаосом, и она типична для окружающей нас природы. В отличие от моделирования шахматной партии, где начальные условия описываются набором целых чисел, при моделировании бильярдной партии нужна практически бесконечная точность. Тем не менее в классической физике шары движутся по идеально точным траекториям и их движение полностью предсказуемо, если только начальные положения и скорости шаров известны нам с бесконечной точностью. Разумеется, чем на более отдалённый момент времени мы хотим предсказать движение шаров, тем с большей точностью нам необходимо знать начальные условия. Но поскольку не существует никаких ограничений на точность задания начальных условий, то соответственно нет и никаких ограничений на точность предсказаний будущего или реконструкции прошлого.

В противоположность классическому квантовый бильярд совершенно непредсказуем, независимо от того, насколько точно мы зададим начальные условия. Не существует такой точности, которая позволила бы нам предсказать что-либо, кроме статистического поведения шаров. В классическом бильярде мы прибегаем к статистическому описанию из-за того, что мы не можем чисто технически достичь необходимой точности определения начальных условий, или из-за того, что решение соответствующих уравнений оказывается слишком сложным. Но квантовый случай не оставляет нам выбора. Законы квантовой механики содержат принципиальную неопределённость, которая не может быть устранена. Почему? Из-за чего мы оказываемся не в состоянии предсказать будущее на основе заданных начальных координат и скоростей? Ответ кроется в знаменитом принципе неопределённости Гейзенберга.

Принцип неопределённости накладывает фундаментальное ограничение на точность одновременного определения координат и скоростей. Это физический аналог ситуации, описанной в «Уловке 22». Пытаясь увеличить точность наших знаний о текущем местоположении шара, мы неизбежно теряем в точности знаний о его последующем положении. Принцип неопределённости является не просто качественной характеристикой поведения объектов, он имеет точную количественную формулировку: произведение неопределённости координаты и неопределённости импульса объекта всегда больше некоторой (очень малой) величины, называемой постоянной Планка. Сам Гейзенберг и многие после него мечтали найти способ обойти принцип неопределённости. Гейзенберг использовал в своих рассуждениях в качестве примера электроны, но с таким же успехом можно рассматривать и бильярдные шары. Представим себе квантовый бильярдный шар, освещённый потоком света. Отражённый от поверхности шара свет можно сфокусировать объективом на фотографической плёнке и, изучив полученное изображение, сделать вывод о местоположении бильярдного шара. Но как определить его скорость? Простейший и наиболее прямой путь – определить местоположение шара ещё раз через короткий промежуток времени. Зная два последовательных положения тела и разделяющий их промежуток времени, можно без труда вычислить скорость.

Почему эксперимент такого рода невозможен? Ответ отсылает нас к одному из величайших открытий Эйнштейна. Ньютон полагал, что свет состоит из частиц, но в начале XX века корпускулярная теория света была полностью дискредитирована. Многие оптические эффекты, такие как интерференция, могли быть объяснены только в предположении, что свет представляет собой волны, похожие на рябь на поверхности воды. В середине XIX века Джеймс Клерк Максвелл создал чрезвычайно удачную теорию, описывающую свет в виде электромагнитных волн, распространяющихся в пространстве подобно звуковым волнам в воздухе. Поэтому предположение, сделанное в 1905 году Эйнштейном, о том, что свет (и все прочие виды электромагнитного излучения) состоит из крохотных частиц, называемых квантами, или фотонами, выглядело, мягко говоря, шокирующим. Эйнштейн странным образом предположил, что свет, сохраняя свои прежние волновые свойства – длину волны, частоту и т. п., – состоит при этом из отдельных частиц – квантов. Эти кванты несут определённые порции энергии, которые не могут быть разделены на более мелкие, и описанные свойства света не позволяют построить с его помощью точное изображение слишком малых объектов.

Начнём с определения положения. Для получения чёткого изображение шара длина волны света должна быть не слишком велика. Правило простое: если вы хотите найти положение объекта с заданной точностью, необходимо использовать свет с длиной волны, не превышающей заданную погрешность. Любые изображения, получаемые при помощи света, являются более или менее нерезкими, и желание увеличить резкость заставляет использовать более короткие волны. Подобная проблема отсутствует в классической физике, где энергия светового импульса может быть сколь угодно малой. Но как показал Эйнштейн, свет состоит из неделимых фотонов, и более того, как мы увидим далее, чем меньше длина волны света, тем больше энергия составляющих его фотонов.

11