Космический ландшафт - Страница 117


К оглавлению

117

То же самое касается и космического ландшафта. Высоты соседних долин не совсем одинаковые. И это может привести к тому, что соседние долины будут отличаться набором бран или потоков, что, в свою очередь, приведёт к различиям в списке элементарных частиц, другим значениям фундаментальных констант и даже размерности пространства. Когда вакуум-родитель порождает пузыря-потомка, результатом будет скорее чудовищная мутация, а не небольшое инкрементальное отличие.

Не является ли вечная инфляция, порождающая неисчислимые пузыри новых миров всевозможных видов, дикой фантасмагорической галлюцинацией? Я так не думаю. Экспоненциальное расширение пространства представляется достаточно твёрдо установленным фактом, который не оспаривает ни один космолог. Возможность существования более чем одной долины ни в коей мере не является чем-то необычным с точки зрения теории, так же как не подлежит сомнению, что раздувающиеся пузыри будут скатываться в области, лежащие на меньшей высоте. Это сегодня общепризнано.

Новым является то, что теория струн даёт нам математическое обоснование возможности существования огромного количества долин с разнообразными свойствами вакуума в них. Многих физиков этот факт очень тревожит. Но наиболее серьёзные струнные теоретики признают, что эта аргументация выглядит достаточно солидно.

Рассмотрим последние этапы космической эволюции нашего фрагмента пространства, непосредственно предшествующие современной эпохе инфляции, последующего разогрева и возникновения жизни. Откуда мы пришли, перед тем как упали с инфляционного обрыва? Наиболее разумный ответ: из соседней долины, лежащей на большей высоте. Чем эта долина отличается от нашей? Теория струн способна дать ответ и на этот вопрос: потоки имели другие значения, браны были расположены по-другому и модули компактификации отличались от наших. Возможно, в процессе похода через горы к обрыву часть бран аннигилировала друг с другом, а остальные перестроились, потоки сместились, а сотни модулей изменились, чтобы создать новый вариант машины Руба Голдберга. И с новым порядком пришли новые Законы Физики.

Парадоксальные отношения между детьми и родителями

В общей теории относительности Эйнштейна могут существовать такие решения, которые бросают вызов нашей способности представлять различные геометрические формы и их отношения. Ярким примером такого решения служат чёрные дыры. Ещё один чрезвычайно интересный и любопытный пример – это геометрия пространства внутри раздувающихся пузырей. Снаружи пузырь выглядит как расширяющаяся сфера, окружённая доменной стенкой или мембраной. Энергия, высвобождающаяся за счёт процессов, происходящих внутри пузыря, преобразуется в кинетическую энергию быстро ускоряющейся доменной стенки. Спустя некоторое время пузырь будет расширяться практически со скоростью света. Можно было бы ожидать, что наблюдатель внутри пузыря будет видеть конечный мир, который в каждый момент ограничен расширяющейся стенкой. Но это не так. Вид изнутри пузыря оказывается совершенно неожиданным.

В пятой главе мы познакомились с тремя основными типами расширяющейся вселенной: закрытой и ограниченной вселенной Александра Фридмана, плоской вселенной и открытой вселенной с отрицательной кривизной пространства. Все три стандартных типа вселенных однородны и ни один из них не имеет края или стенки. Можно было бы подумать, что обитатель пузыря обнаружит расширяющуюся доменную стенку и придёт к выводу, что его вселенная не относится ни к одному из трёх стандартных типов. Это ошибочное предположение, потому что на самом деле обитатель пузыря будет наблюдать вокруг себя бесконечную открытую вселенную с отрицательной кривизной пространства! Как конечный расширяющийся пузырь может выглядеть изнутри бесконечной вселенной?! Это пример одного из удивительных парадоксов неевклидовой эйнштейновской геометрии.

Я постараюсь дать вам некоторое представление о том, как разрешается этот парадокс. Начнём с карты Земли. Сферическая поверхность Земли не может быть отображена на плоскости без искажений. Например, в проекции Меркатора Гренландия выглядит почти столь же большой, как Северная Америка, и много большей, чем Южная Америка и Африка. Конечно же, она и близко не так велика, как эти континенты. Но для отображения поверхности Земли на плоскость такое искажение масштаба необходимо.

То же самое получится, если мы пытаемся отобразить на плоскость поверхность с отрицательной кривизной. Нарисовать такое пространство непросто, но к счастью, один знаменитый художник уже сделал эту работу. «Ангелы и дьяволы» Эшера представляют собой не что иное, как изображённое на плоском листе бумаги пространство с отрицательной кривизной. В исходном пространстве все ангелы имеют один и тот же размер, и то же самое касается и демонов.



Представьте себе вместо ангелов галактики и вы получите представление о вселенной с отрицательной кривизной. Для того чтобы изобразить такую вселенную на плоскости, пришлось исказить масштаб, сделав объекты на краю меньше, чем объекты в центре.



На самом деле расстояние от центра пространства до границы является бесконечным. Чтобы добраться до края, необходимо пройти мимо бесконечного количества демонов (или ангелов). А поскольку каждый демон имеет тот же размер, что и все остальные, расстояние тоже оказывается бесконечным. Тем не менее все это бесконечное пространство умещается внутри круга, когда он отображается на плоскость. Имея это в виду, не так уж трудно представить себе бесконечные геометрии, вписывающиеся в конечные пузыри.

117