Космический ландшафт - Страница 120


К оглавлению

120

На первый взгляд многомировая интерпретация Эверетта имеет мало общего с вечной инфляцией Мегаверсума. Однако мне думается, что это практически одно и то же. Я уже неоднократно подчёркивал, что квантовая механика не предсказывает поведение системы в будущем на основе её состояния в прошлом. Вместо этого она предсказывает вероятность реализации того или иного исхода эксперимента, или, правильнее, вероятность результата наблюдения. Эта вероятность описывается фундаментальным математическим объектом квантовой механики – волновой функцией.

Если вы немного знакомы с квантовой механикой и в курсе, что Шрёдингер открыл волновое уравнение, описывающее поведение электронов, то вы слышали и о волновой функции. Я хотел бы, чтобы вы забыли всё это. Волновая функция Шрёдингера представляет собой очень частный случай гораздо более общей концепции, и именно на этой более общей идее я хочу сейчас заострить ваше внимание. В любой момент, например прямо сейчас, есть многое на свете, друг читатель, что можно наблюдать в подлунном мире. Я мог бы поднять взгляд на окно над моим рабочим столом и посмотреть, не взошла ли луна. Или я мог бы сидеть и планировать эксперимент с двумя щелями (см. главу 1), а затем наблюдать расположение пятен на экране. Ещё один эксперимент мог бы состоять в наблюдении за нейтроном, который был «приготовлен» в определённое время, скажем, десять минут назад. Как вы помните из главы 1, нейтроны, не связанные в ядре, неустойчивы. В среднем (но только в среднем) нейтрон распадается в течение двенадцати минут на протон, электрон и антинейтрино. В этом случае суть наблюдения могла бы состоять в том, чтобы определить, распался нейтрон по истечении десяти минут или по-прежнему пребывает в первоначальном виде. Каждый из этих экспериментов предполагает более одного возможного результата. В самом общем смысле волновая функция представляет собой список вероятностей для всех возможных результатов всех возможных наблюдений состояний рассматриваемой системы. Если быть более точным, то она представляет собой список квадратных корней всех этих вероятностей.

Распад нейтрона является хорошей иллюстрацией для начала разговора о волновой функции. Для упрощения рассуждений предположим, что эксперимент по наблюдению нейтрона может иметь только два исхода: нейтрон либо распался, либо нет. Список вероятностей в этом случае будет очень коротким – в нём будет только две записи для волновой функции. Если первоначально нейтрон находится в нераспавшемся состоянии, то список значений его волновой функции будет состоять из двух записей: 1 и 0. Другими словами, вероятность, что первоначально нейтрон находится в нераспавшемся состоянии, равна 1, а вероятность того, что он распался, равна 0. Но уже через короткое время появляется крохотная вероятность, что нейтрон распадётся. Теперь две записи значений волновой функции в нашем списке будут отличаться от 1 и 0. Первое значение будет чуть меньше 1, а второе – чуть больше 0. Чуть больше чем через десять минут эти вероятности сравняются, а ещё через десять минут они поменяются местами: вероятность того, что нейтрон остался целым, будет стремиться к нулю, а вероятность того, что он распался на протон, электрон и антинейтрино, – к единице. Квантовая механика содержит ряд правил, позволяющих рассчитать эволюцию волновой функции со временем. В своей наиболее общей форме волновая функция описывает систему, включающую в себя всё: всю наблюдаемую Вселенную, включая наблюдателей, проводящих эксперименты. Так как в этой системе может быть более одного сгустка материи, который может быть назван наблюдателем, теория должна быть самосогласованной в отношении описания всех процессов наблюдений. Волновая функция содержит полное квантово-механическое описание системы, и, следовательно, нам необходимо доказать согласованность теории, например, для случая, когда два наблюдателя встречаются в одном месте, чтобы обсудить результаты своих наблюдений.

Рассмотрим наиболее известный из всех мысленных экспериментов – знаменитый (или я должен сказать «печально известный»?) эксперимент с котом Шрёдингера. Представьте себе, что в полдень, в 12:00, кот помещается в закрытый ящик вместе с нейтроном и пистолетом. Когда нейтрон распадается (случайно), образующийся при распаде электрон активирует цепь, которая вызывает пистолетный выстрел, убивающий кота.

Практикующий квантовый механик – назовём его Ш. – пытается проанализировать эксперимент, написав волновую функцию – список вероятностей для различных результатов. Ш. не может учесть всю Вселенную, поэтому он ограничивает описание системы только теми объектами, которые находятся внутри ящика. Моменту полудня соответствует только одна запись: «Кот жив, нейтрон цел, пистолет заряжен». После этого Ш. проделывает некие математические манипуляции, чтобы решить уравнение и узнать, что будет дальше. Но результат его вычислений не является точным предсказанием, будет кот жив или мёртв. Результатом будет новое значение волновой функции, которая теперь состоит из двух записей: «Кот жив, нейтрон цел, пистолет заряжен» и «Кот мёртв, нейтрон распался, пистолет выстрелил». Волновая функция расщепляет ход истории на две ветви: «живую» и «мёртвую», а её численные значения являются квадратными корнями из вероятностей реализации этих двух исходов.

Ш. может открыть ящик и проверить, жив кот или нет. Если кот жив, то Ш. может смело выбросить ветвь волновой функции, приводящую к смерти кота. Эта ветвь, если продолжить её дальше во времени, будет содержать всю информацию о мире, в котором кот был застрелен, но так как Ш. обнаружил кота живым, эта информация ему больше не нужна. Существует термин для процесса исчезновения побочных ветвей волновой функции при выполнении акта наблюдения. Его называют редукцией волновой функции. Это очень удобный трюк, позволяющий физику сосредоточиться только на тех вещах, которые впоследствии могут представлять интерес. К примеру, «живая» ветвь содержит информацию, которая может заинтересовать Ш. Если он проследит эту ветвь в будущее, он сможет определить вероятность того, что пистолет впоследствии случайно выстрелит и застрелит самого Ш. (что будет возмездием за издевательство над котом). Редукция волновой функции, происходящая при каждом акте наблюдения, является ключевым моментом знаменитой копенгагенской интерпретации квантовой механики, которую отстаивал Нильс Бор.

120