Со временем осетрологам удалось убедить других рыб, что населённая ими планета вращается вокруг раскалённого светящегося ядерного реактора – звезды, дающей энергию для нагревания воды. Теперь вопрос, которым были одержимы их лучшие умы, предстал в совершенно новом свете. Понимая, что температура океана зависит от расстояния до звезды, они сформулировали новую головоломку: «Почему орбитальное расстояние нашей планеты от источника тепла так тонко настроено?» Но ответ осетрологов был тем же самым: «Вселенная велика. В ней много звёзд и планет, и какая-то очень малая часть этих планет совершенно случайно оказалась на благоприятном для существования жидкой воды и рыб расстоянии от своих звёзд».
Но некоторые фишики не удовлетворились таким ответом. Они справедливо заметили, что температура на поверхности планеты зависит не только от орбитального расстояния. Светимость звезды – интенсивность, с которой она излучает энергию, – тоже должна входить в уравнение. «Мы могли бы находиться вблизи небольшой тусклой звезды или вдалеке от яркого гиганта. Существует целый набор вариантов. Ихтиотропный принцип даёт здесь сбой. Он никоим образом не может объяснить, почему наша планета находится именно на таком, а не на другом расстоянии от звезды».
Но в намерения осетрологов никогда и не входило объяснение каждой особенности природы. Их утверждение, что Вселенная является достаточно большой, чтобы содержать очень широкий набор вариантов природных условий, остаётся в силе. Аргумент, что ихтиотропный принцип не может объяснить всё, – это лишь логическая уловка, придуманная фишиками для того, чтобы опровергнуть его.
Существует очень тесная параллель между этой историей и антропным принципом. Возьмём, например, космологическую постоянную и степень неоднородности ранней Вселенной. В главе 2 я рассказывал, как Вайнберг объясняет факт малости космологической постоянной. Если бы она была намного больше, то неоднородности, присутствующие в ранней Вселенной, не смогли бы превратиться в галактики. Но предположим, что исходная неоднородность была немного больше. В этом случае нас устроит и несколько большее значение космологической постоянной. Как и в случае орбитального расстояния и светимости звезды, есть целый набор взаимосвязанных значений космологической постоянной и степени неоднородности, приводящих к возникновению жизни или, по крайней мере, галактик. Антропный принцип сам по себе бессилен для выбора между этими парами значений. Некоторые физики готовы принять это в качестве аргумента против антропного принципа. Ещё раз повторю, что я расцениваю это как логическую уловку.
Вполне возможно, что осетрологи с фишиками сумели в конце концов перейти к более конструктивному диалогу. Для этого они пригласили астрофишиков – экспертов по образованию и эволюции звёзд. Эти учёные рыбы изучили процесс формирования звёзд из гигантских газовых облаков и, как и ожидалось, обнаружили, что образующиеся звёзды обладают очень широким диапазоном светимостей. Не имея возможности непосредственного измерения светимостей различных звёзд, астрофишики тем не менее пришли к выводу, что звёзды, имеющие светимость в определённом диапазоне, должны встречаться чаще других. Астрофишики вычислили, что наиболее долгоживущие звёзды должны иметь светимость в диапазоне от 10 до 10 ватт. Их звезда, по всей видимости, попадает в этот диапазон.
Теперь за дело взялись осетрологи. При такой светимости звезды планета должна располагаться от неё на расстоянии около ста миллионов миль, чтобы климат планеты был умеренным, а на поверхности существовало достаточно жидкой воды. Это предположение не было настолько точным, как им хотелось бы. Как и любой вероятностный результат, оно могло оказаться и неправильным. Но все же это было лучше, чем полное отсутствие предположения.
Общим между двумя этими ситуациями – существованием жидкой воды и формированием галактик – является то, что одних только антропных (или ихтиотропных) соображений оказывается недостаточно для объяснения или предсказания всего на свете. Это неизбежно, если на Ландшафте оказывается более чем одна долина с пригодными для жизни условиями, а когда ландшафт состоит из 10 долин, вероятность существования множества пригодных для жизни долин выглядит достаточно высокой. Назовём пригодный для существования жизни вакуум антропно приемлемым. Обычные физика и химия в антропно приемлемой долине могут быть очень похожи на наши. Там могут существовать электроны, ядра, планеты, звёзды, галактики и законы гравитации, почти такие же, как и в нашем мире. Различия могут обнаруживаться лишь в таких вещах, которые интересуют только физиков высоких энергий. Например, в природе существует множество частиц: t-кварк, тау-лептон и другие, – свойства которых вряд ли оказывают какое-то серьёзное влияние на обычный мир. Различия между такими мирами будет очень сложно обнаружить без помощи гигантских ускорителей заряженных частиц. Некоторые из этих вакуумов (включая наш собственный) могут содержать множество новых типов частиц, не оказывающих практически никакого влияния на обычную физику. Есть ли способ объяснить, почему мы живём в каком-то одном конкретном из этих антропно приемлемых вакуумов? Очевидно, что антропный принцип нам в этом не помощник, потому что все подобные вакуумы допускают существование жизни.
Этот вывод вызывает разочарование. Он оставляет теорию открытой для серьёзных обвинений в том, что она не обладает предсказательной силой, к которым учёные особенно чувствительны. Для решения этой проблемы многие космологи пытались дополнить антропный принцип дополнительными вероятностными предположениями. Например, вместо того чтобы спрашивать, почему масса t-кварка имеет конкретное значение, можно попытаться спросить, какова вероятность того, что масса t-кварка находится в определённом диапазоне.