Космический ландшафт - Страница 38


К оглавлению

38

Магнитные поля не возникают сами по себе. Для создания поля требуется энергия. На заре электромагнитной теории, прежде чем Майкл Фарадей ввёл понятие поля, считалось, что это энергия электрических токов, протекающих по проводам электрических схем. Но Фарадей по-новому взглянул на природу вещей и вместо проводов, трансформаторов, сопротивлений и других элементов схем сосредоточил внимание на полях, заполняющих пространство и влияющих на поведение заряженных тел. Очень скоро физики осознали огромное значение энергии самого поля: везде, где есть поля, есть энергия. Например, энергия, содержащаяся в электромагнитном поле луча света, нагревает освещаемые им холодные предметы.

В магнитном поле МРТ-аппарата тоже содержится энергия. Позже мы столкнёмся с полями, содержащими гораздо бо́льшую энергию, чем слабое магнитное поле, используемое в магнитно-резонансной томографии, энергии которого едва ли хватит на то, чтобы вскипятить полстакана воды.

Добавив к нашему одномерному ландшафту вертикальную ось, мы сможем графически отобразить энергию в каждой точке. Энергия магнитного поля пропорциональна квадрату его напряжённости, поэтому наш график будет представлять собой параболу, опирающуюся вершиной на начало координат.



Магнитное поле было одним из двух полей, введённых Фарадеем. Второе поле – электрическое. В отличие от магнитного, оно не оказывает влияния на стрелку компаса, но способно заставить встать дыбом волосы на вашей голове. Сильное электрическое поле может деформировать атомы, растягивая в разные стороны отрицательно заряженные электроны и положительно заряженные атомные ядра. Деформированные атомы образуют длинные цепочки, в которых положительно заряженные ядра одних атомов притягиваются к вытянутым отрицательно заряженным электронным оболочкам других. Ещё более сильное электрическое поле оторвёт атомы друг от друга. Понятно, что в подобных точках ландшафта атомы уже не смогут существовать, и, как следствие, не сможет существовать и жизнь.

Присутствие и электрического и магнитного полей вносит ещё большее разнообразие в ландшафт, который становится двумерным. Поскольку электрическое поле тоже обладает энергией, «высота» ландшафта будет изменяться уже в двух горизонтальных измерениях. Такой ландшафт будет выглядеть подобно глубокой чаше с круто поднимающимися вверх краями.



Поскольку электрическое и магнитное поля по-разному влияют на поведение электронов, они вносят большее разнообразие в Законы Физики. Электроны в смешанном поле движутся по более сложным траекториям, чем в каждом из полей по отдельности. Энергетические уровни атомов демонстрируют больший уровень сложности, и ландшафт оказывается более разнообразным. Если всё пространство равномерно заполнить электрическим и магнитным полями, можно будет утверждать, что Законы Физики зависят от «местоположения» вселенной на двумерном ландшафте. В природе, помимо электрического и магнитного, существует большое количество полей, но общий принцип остаётся неизменным: каждая точка на ландшафте, или, другими словами, каждая комбинация полей соответствует определённому значению плотности энергии. Представляя поля расположенными в горизонтальной плоскости, мы должны добавить к ландшафту всего одну ось для представления энергии. Называя эту ось «высотой», мы, образно говоря, получаем ландшафт с равнинами, холмами, горами и долинами.

Не следует забывать, что электрическое и магнитное поля являются векторными полями, что означает, что в каждой точке они имеют не только величину напряжённости, но и направление. Стрелка компаса, расположенного вблизи магнита, укажет направление магнитного поля. В идеальном случае вектор магнитного поля в любой точке на поверхности Земли всегда указывал бы на северный магнитный полюс. В реальности ситуация далека от идеальной, потому что огромные залежи железной руды в земной коре искажают картину магнитного поля, вызывая местные вариации его направления.

Большинство полей, образующих ландшафт, проще электрического и магнитного: большая часть этих полей является скалярными полями. Скалярное поле не имеет направления и характеризуется только одной величиной – напряжённостью. Примером скалярного поля может служить поле распределения температуры на поверхности Земли. Вы никогда не услышите от синоптика что-либо типа: «двадцать градусов Цельсия в направлении на северо-запад». Температура имеет величину, но не имеет направления. Но синоптики имеют дело и с векторными полями, например со скоростью ветра, имеющей как величину, так и направление. Температура, атмосферное давление, влажность и скорость ветра являются величинами, которые могут меняться от места к месту, что и делает их полями. Разумеется, это только аналогия, и они не имеют ничего общего с полями, образующими ландшафт.

Поле Хиггса очень похоже на магнитное поле (если не считать, что оно скалярное), но им несоизмеримо труднее манипулировать. Для изменения поля Хиггса даже на ничтожную величину требуется невообразимое количество энергии. Однако если бы мы научились управлять им, мы смогли бы менять по своему усмотрению массы всех элементарных частиц, за исключением фотона.

Локомотивы, пушечные ядра, элементарные частицы – всё имеет массу. Масса является мерой инертности: более массивное тело труднее заставить двигаться или остановить. Для определения массы тела следует приложить к нему силу и измерить создаваемое этой силой ускорение: отношение силы к ускорению и будет массой. Если в момент начала эксперимента тело покоилось, то измеренная масса называется массой покоя. В прошлом было принято различать массу движения и массу покоя, но сегодня термин «масса» всегда означает массу покоя.

38