Теперь можно вернуться к сложным научным вопросам. В следующей главе я расскажу об удивительных (удивительные – это даже слабо сказано) космологических исследованиях, которые заставили физиков и космологов прийти к новой парадигме. В первую очередь я расскажу о том, что мы узнали о самой ранней истории нашей Вселенной, как она пришла к своему нынешнему нестабильному состоянию, и открою вам шокирующие факты, касающиеся 120-го десятичного знака космологической постоянной.
Я поражаюсь людям, которые хотят познать Вселенную, но при этом не способны найти дорогу вокруг Чайна-тауна.
Вуди Аллен
Упоминание одна тысяча девятьсот двадцать девятого года заставляет вздрагивать тех, кто достаточно стар, чтобы помнить рушащиеся один за другим банки, эпидемию самоубийств на Уолл-стрит, крах ипотечного кредитования, безработицу. Это была Великая депрессия. Но не всё было плохо в этом году. В то время как фондовый рынок лопнул, как проткнутый воздушный шарик, в солнечной Калифорнии Эдвин Хаббл открыл Большой взрыв – взрыв, из которого родилась вся известная нам Вселенная. Вопреки тому, что ещё в 1917 году предполагал Эйнштейн, Вселенная меняется и расширяется со временем. По данным Хаббла выходило, что все далёкие галактики разбегаются от нас, как если бы они были выстрелены из гигантской пушки, способной стрелять во всех направлениях и из каждого места пространства одновременно. Хаббл обнаружил, что Вселенная не просто меняется, она расширяется, как надувающийся шар.
Хаббл использовал для измерения движения галактик давно известную технику. Свет от галактики направлялся в спектроскоп, который разлагал его в спектр. Исаак Ньютон делал то же самое ещё в XVII веке, пропуская солнечный свет через треугольную призму. Призма – это простейший спектроскоп, разлагающий солнечный свет на все цвета радуги. Ньютон справедливо заключил, что белый свет представляет собой совокупность красного, оранжевого, жёлтого, зелёного, голубого, синего и фиолетового цветов. Сегодня мы знаем, что каждому цвету спектра соответствует свет определённой длины волны.
Если внимательно посмотреть на спектр света звезды, то можно увидеть тонкие тёмные спектральные линии, расположенные поперёк радужной полоски.
Линии поглощения
Эти таинственные линии – более тёмные, чем остальной спектр, – называются линиями поглощения. Они указывают на то, что где-то между нами и источником света находится что-то, что поглощает свет строго определённой длины волны, не оказывая влияния на весь остальной спектр. Что же может быть причиной этого странного явления? Квантовое поведение электронов.
Согласно модели атома, придуманной Нильсом Бором, электроны в атоме располагаются на определённых дискретных орбитах. Ньютоновская механика разрешает электрону обращаться по любой орбите на любом расстоянии от ядра, но квантовая механика накладывает на движение электрона ограничения, подобные правилам движения транспортных средств по полосам. Двигаясь между полосами, транспортное средство нарушает правила дорожного движения; двигаясь между разрешёнными орбитами, электрон нарушает правила квантовой механики. Каждой орбите соответствует своя энергия, поэтому при переходе электрона с одной орбиты на другую его энергия изменяется. Когда электрон перескакивает с более высокой орбиты на более низкую, он излучает фотон, уносящий избыток энергии. И наоборот, чтобы перескочить с более низкой орбиты на более высокую, электрону требуется поглотить фотон.
Обычно электрон находится на самой нижней из разрешённых орбит, не занятой другими электронами (вспомните принцип запрета Паули, не позволяющий двум электронам находиться в одном и том же квантовом состоянии). Но в случае столкновения атома с другой частицей электрон может получить часть энергии этого столкновения и перейти на новую орбиту, расположенную дальше от ядра. Атом в таком состоянии называется возбуждённым. Спустя короткое время электрон испускает фотон и возвращается на свою прежнюю орбиту. Свет, излучаемый в таком процессе, имеет строго определённую длину волны, зависящую от типа атома. Таким образом, каждый химический элемент имеет собственную уникальную «подпись» – набор спектральных линий, обусловленный квантовыми переходами электронов в атомах этого элемента.
Если фотон, падающий на атом, имеет энергию, соответствующую энергии разрешённого перехода в атоме, то может произойти обратный процесс: фотон будет поглощён, а электрон, получив дополнительную энергию, перейдёт на более высокую разрешённую орбиту. При прохождении света звезды через водород, из которого состоит звёздная атмосфера, атомы водорода поглощают фотоны, имеющие длину волны, соответствующую разности энергий между разрешёнными орбитами электронов, оставляя в спектре изучения звезды тёмные линии. Если в атмосфере звезды присутствуют гелий, углерод и другие химические элементы, то каждый из них оставит свою собственную уникальную подпись в виде набора тёмных линий в спектре. Изучая спектры излучения звёзд, учёные определяют их химический состав. Но в отношении задачи, которую решал Хаббл, нас интересует не химический состав звёзд, а их скорости относительно наблюдателя. Ключ к определению скоростей звёзд спрятан в зависимости расположения спектральных линий в свете звезды от скорости, с которой звезда приближается или удаляется от земного наблюдателя. Это ключ называется эффектом Доплера.