Космический ландшафт - Страница 5


К оглавлению

5

Гравитация играет ведущую роль в развёртывании Вселенной. Она является причиной конденсации вещества – водорода, гелия и так называемой тёмной материи – в сгустки галактик, звёзд и, наконец, планет. Но чтобы это произошло, очень ранняя Вселенная должна быть слегка «комковатой». Если бы исходный материал Вселенной был распределён равномерно, он и оставался бы таким в течение всего времени. Выходит, что 14 миллиардов лет назад Вселенная уже состояла из множества комков. Будь комки немного больше или немного меньше, и не сформировались бы ни галактики, ни звёзды, ни планеты и жизни было бы негде развиваться.

Наконец, Вселенная имеет определённый химический состав. В начале были только водород и гелий. Разумеется, для формирования жизни этого недостаточно. Углерод, кислород и остальные элементы возникли позже. Они сформировались в ходе ядерных реакций внутри звёзд. Но способность звёзд превращать водород и гелий в наиболее важный для жизни углерод является очень деликатным делом. Небольшие изменения в законах электромагнетизма и ядерной физики способны предотвратить образование ядер углерода.

Кроме того, после образования углерода, кислорода и других биологически важных элементов внутри звёзд они должны были освободиться оттуда, чтобы предоставить материал для формирования планет и возникновения жизни, – мы ведь не можем жить в горячих недрах звёзд. Каким же образом этим элементам удалось покинуть звёздные недра? Ответ: в результате взрывов сверхновых.

Взрыв сверхновой сам по себе замечательный феномен. В дополнение к нейтронам, электронам, фотонам и гравитации для обеспечения взрыва сверхновой необходим ещё один тип элементарных частиц – нейтрино. Вылетая из коллапсирующей звезды, нейтрино создают давление, выталкивающее наружу все остальные частицы. К счастью, в нашем списке элементарных частиц присутствуют и нейтрино, притом с нужными свойствами.

Как я уже сказал, мир, полный биологических явлений, отнюдь не соответствует общим ожиданиям. Среди множества возможных вариантов списков элементарных частиц и различных взаимодействий это очень редкое исключение. Но достаточно ли исключительно это исключение, чтобы оправдать введение новой радикальной парадигмы, включающей антропный принцип? Если бы наши суждения основывались только на тех вещах, о которых я уже рассказал, нам не удалось бы привести к консенсусу даже тех, кто открыт для антропных идей. Большинство тонких настроек, необходимых для существования жизни, всё же допускают некоторый разброс, не позволяющий отвергать вероятность случайного везения. Возможно – а в это всегда верили физики, – в конце концов будет обнаружен математический принцип, который объяснит существование именно такого списка частиц и констант, и множество счастливых совпадений окажется не более чем множеством счастливых совпадений. Но существует одна тонкая настройка (я расскажу о ней в главе 2), которая в высшей степени невероятна. Она являлась вселенской головоломкой для физиков в течение пятидесяти лет. Единственное её объяснение, если только его можно назвать объяснением, – это антропный принцип.

Сформулирую ещё один парадокс: «Можем ли мы надеяться когда-нибудь объяснить чрезвычайно доброжелательный характер физических законов нашего собственного мира без апелляции к сверхъестественному разуму, когда антропный принцип с его помещением разумной жизни на центральное место в объяснении свойств нашей Вселенной выглядит как предположение, будто кто-то, некий агент, наблюдает за человечеством?» Эта книга о формировании новой физической парадигмы, которая тоже использует антропный принцип, но особым способом, предполагающим полностью научное объяснение наблюдаемой щедрости Вселенной, – при помощи физического дарвинизма, как я его называю.

Каковы же законы физики, о которых я говорил? Как они сформулированы? До тех пор, пока не появился Ричард Фейнман, единственным инструментом, который использовали теоретики для выражения законов физики, были загадочные непроходимые уравнения квантовой теории поля – настолько сложные, что даже у математиков были проблемы с их пониманием. Но сверхъестественная способность Фейнмана визуализировать физические явления в корне изменила ситуацию. Он придумал, как обобщить законы элементарных частиц в виде несколько простых рисунков. Фейнмановские диаграммы и законы физики элементарных частиц, известные физикам как стандартная модель, будут предметом главы 1.

Действительно ли Вселенная и законы природы настолько сбалансированы? Вторую главу, которую я назвал «Мать всех физических проблем», правильнее было бы назвать «Мать шаткого равновесия». Если законы элементарных частиц перенести на законы гравитации, результатом станет потенциальная катастрофа: мир, в котором небесные тела поведут себя подобно элементарным частицам, будет разорван на куски самой разрушительной силой, какую только можно себе вообразить. Единственный выход из этого кошмара – подобрать значение одной из констант, космологической постоянной Эйнштейна, настолько точно, что никому даже в голову не придёт, что это значение могло возникнуть случайным образом.

Космологическая постоянная была введена Эйнштейном вскоре после завершения его теории гравитации, и вот уже более 90 лет она является величайшей загадкой для физиков-теоретиков. Она описывает силу отталкивания – наподобие антигравитации – силу, которая могла бы полностью разметать Вселенную, не будь космологическая постоянная столь исчезающе малой. А проблема в том, что все современные теории требуют, чтобы космологическая постоянная была отнюдь не малой. Современная физика покоится на двух основаниях: теории относительности и квантовой механике. Общим результатом построения мира на этих принципах оказывается Вселенная, которая очень быстро самоуничтожается. Но по совершенно необъяснимым причинам космологическая постоянная «отрегулирована» с удивительной степенью точности. Для некоторых этот факт больше, чем какой-либо другой, служит основанием считать, что Вселенная должна быть результатом творения.

5