Космический ландшафт - Страница 88


К оглавлению

88

Калуца совершил удивительное открытие. Если к обычным 3 + 1 измерениям добавить ещё одно свёрнутое измерение, то геометрия пространства-времени включит в себя не только гравитационное поле Эйнштейна, но и электромагнитное поле Максвелла: гравитация, электричество и магнетизм могут быть объединены в одну всеохватывающую теорию.

Блестящая идея Калуцы привлекла внимание Эйнштейна, который пришёл от неё в полный восторг. Согласно Калуце, частицы могут двигаться не только в трёх обычных измерениях, но и в четвёртом, скрытом. Он обнаружил, что если две частицы движутся в этом дополнительном измерении, то гравитационная сила, действующая между ними, претерпевает изменения, и самое удивительное, что эта добавка к гравитационной силе оказывается идентичной электрическому взаимодействию между двумя заряженными частицами. Более того, электрический заряд каждой частицы – это не что иное, как компонент импульса в дополнительном измерении. Если частицы вращаются в этом компактном измерении в одном направлении, то они отталкиваются друг от друга. Если они вращаются в противоположных направлениях, то они притягиваются. Но если хотя бы одна из двух частиц не вращается в дополнительном измерении, между ними остаётся лишь обычное гравитационное взаимодействие. В воздухе явно запахло возможностью объяснить, почему одни частицы, например электроны, имеют электрический заряд, а другие, скажем нейтрино, не имеют. Заряженные частицы попросту движутся в компактном измерении пространства, в то время как нейтральные частицы – нет. Это даже позволяло объяснить различия между электроном и его античастицей – позитроном. Электрон вращается в компактном измерении в одну сторону, скажем по часовой стрелке, а позитрон – против часовой стрелки.

Следующее озарение принесла квантовая механика. Подобно любым другим колебательным движениям движение в направлении компактной y-координаты квантовано. Частица не может двигаться вдоль оси y с произвольным значением проекции импульса на ось y. Оно может принимать только дискретные значения, так же как и в гармоническом осцилляторе или у электрона в атомной теории Бора. А это, в свою очередь, означает, что момент в y-измерении и, соответственно, заряд электрона не могут принимать произвольные значения. Электрический заряд в теории Калуцы квантован, он может выражаться только произведением заряда электрона на целое число. Заряд частицы может в два или в три раза превышать заряд электрона, но не может отличаться от него, например, в 1,88 или в 0,067 раза. И это радует. В реальном мире не обнаружено ни одного объекта, имеющего дробный (в единицах заряда электрона) заряд: все электрически заряженные тела имеют заряд, кратный заряду электрона.

Это потрясающее открытие, тем не менее, так и оставалось не более чем «интересной идеей» на протяжении всей оставшейся жизни Калуцы. Но для нашей книги оно имеет ключевое значение. Теория Калуцы продемонстрировала, как свойства частиц могут возникать из дополнительных пространственных измерений. И действительно, обнаружив, что теория струн требует шести дополнительных измерений, струнные теоретики вспомнили об идеях Калуцы. Достаточно просто свернуть шесть дополнительных измерений надлежащим образом, чтобы движением в них объяснить внутреннюю машинерию элементарных частиц.

Возможности теории струн гораздо богаче, чем теории точечных частиц. Вернёмся к цилиндру и предположим, что по его поверхности движется маленькая замкнутая струна. Начнём с цилиндра, окружность которого достаточно велика, чтобы видеть её невооружённым глазом. Маленькая замкнутая струна может двигаться по нему таким же образом, как и точечная частица: вдоль образующей цилиндра или вокруг его оси. В этом случае движение струны принципиально не отличается от движения точечной частицы. Но есть кое-что, на что струна способна, а точечная частица – нет. Струна может быть обёрнута вокруг цилиндра подобно резиновому кольцу, надетому на картонную трубку. Обёрнутая вокруг цилиндра струна отличается от необёрнутой. Резиновое кольцо можно надеть на цилиндр так, что оно будет оборачивать его дважды, трижды и т. д., пока оно не порвётся. Этот мысленный эксперимент приводит нас к новому свойству струн, которое в принципе отсутствует у точечных частиц, называемому числом кручения. Это число сообщает нам, сколько витков струны намотано на компактное измерение.



Число кручения является тем свойством частицы, которое невозможно понять, если наш микроскоп недостаточно силён, чтобы разрешать детали, имеющие размеры, сравнимые с размером компактного измерения. Как вы теперь понимаете, дополнительные измерения оказались благословением, а не проклятием для теории струн, поскольку они необходимы для объяснения сложных свойств элементарных частиц.

Двумерный цилиндр изобразить достаточно легко, но я сомневаюсь, чтобы кто-нибудь был в состоянии представить себе девятимерный мир, шесть измерений которого свёрнуты в крошечное шестимерное пространство. Но рисование картинок на листе бумаги или представление моделей в голове не единственный способ оперировать шестимерной геометрией теории струн. Часто геометрия может быть сведена к алгебре точно таким же способом, которым вы в школе описывали различные геометрические фигуры, например окружность или прямую, при помощи уравнений. Тем не менее даже самые мощные математические методы часто пасуют перед шестимерной геометрией.

88